
Package: ggalt (via r-universe)
August 20, 2024

Title Extra Coordinate Systems, 'Geoms', Statistical Transformations,
Scales and Fonts for 'ggplot2'

Version 0.6.1

Maintainer Bob Rudis <bob@rud.is>

Description A compendium of new geometries, coordinate systems,
statistical transformations, scales and fonts for 'ggplot2',
including splines, 1d and 2d densities, univariate average
shifted histograms, a new map coordinate system based on the
'PROJ.4'-library along with geom_cartogram() that mimics the
original functionality of geom_map(), formatters for ``bytes'', a
stat_stepribbon() function, increased 'plotly' compatibility
and the 'StateFace' open source font 'ProPublica'. Further new
functionality includes lollipop charts, dumbbell charts, the
ability to encircle points and coordinate-system-based text
annotations.

License MIT + file LICENSE

LazyData true

URL https://github.com/hrbrmstr/ggalt

BugReports https://github.com/hrbrmstr/ggalt/issues

Encoding UTF-8

Depends R (>= 3.2.0), ggplot2 (>= 2.2.1)

Suggests testthat, gridExtra, knitr, rmarkdown, ggthemes, reshape2

Imports utils, graphics, datasets, grDevices, plyr, dplyr,
RColorBrewer, KernSmooth, proj4, scales, grid, gtable, ash,
maps, MASS, extrafont, tibble, plotly (>= 3.4.1)

RoxygenNote 7.2.3

VignetteBuilder knitr

Collate 'annotate_textp.r' 'annotation_ticks.r' 'coord_proj.r'
'formatters.r' 'fortify.r' 'position-dodgev.R' 'geom2plotly.r'
'geom_ash.r' 'geom_bkde.r' 'geom_bkde2d.r' 'geom_spikelines.R'
'geom_dumbbell.R' 'geom_cartogram.r' 'geom_encircle.r'

1

https://github.com/hrbrmstr/ggalt
https://github.com/hrbrmstr/ggalt/issues

2 annotate_textp

'geom_horizon.r' 'geom_lollipop.r' 'geom_table.r'
'geom_twoway_bar.r' 'geom_xspline.r' 'geom_xspline2.r'
'geom_ubar.r' 'stat-stepribbon.r' 'ggalt-package.r'
'grob_absolute.r' 'guide_axis.r' 'stateface.r' 'utils.r'
'zzz.r'

Repository https://hrbrmstr.r-universe.dev

RemoteUrl https://github.com/hrbrmstr/ggalt

RemoteRef HEAD

RemoteSha 8941f8c9b13ac38ca0cf6500951017c35241de28

Contents
annotate_textp . 2
annotation_ticks . 3
byte_format . 5
coord_proj . 6
fortify.table . 8
GeomTicks . 9
geom_bkde . 9
geom_bkde2d . 12
geom_cartogram . 15
geom_dumbbell . 18
geom_encircle . 20
geom_lollipop . 22
geom_spikelines . 25
geom_stateface . 26
geom_ubar . 29
geom_xspline . 31
geom_xspline2 . 34
ggalt . 36
load_stateface . 36
position_dodgev . 37
show_stateface . 38
stat_ash . 38
stat_stepribbon . 41

Index 43

annotate_textp Text annotations in plot coordinate system

Description

Annotates the plot with text. Compared to annotate("text",...), the placement of the annota-
tions is specified in plot coordinates (from 0 to 1) instead of data coordinates.

annotation_ticks 3

Usage

annotate_textp(
label,
x,
y,
facets = NULL,
hjust = 0,
vjust = 0,
color = "black",
alpha = NA,
family = theme_get()$text$family,
size = theme_get()$text$size,
fontface = 1,
lineheight = 1,
box_just = ifelse(c(x, y) < 0.5, 0, 1),
margin = unit(size/2, "pt")

)

Arguments

label text annotation to be placed on the plot

x, y positions of the individual annotations, in plot coordinates (0..1) instead of data
coordinates!

facets facet positions of the individual annotations

hjust, vjust horizontal and vertical justification of the text relative to the bounding box

color alpha, family, size, fontface, lineheight font properties
alpha, family, size, fontface, lineheight

standard aesthetic customizations

box_just placement of the bounding box for the text relative to x,y coordinates. Per de-
fault, the box is placed to the center of the plot. Be aware that parts of the box
which are outside of the visible region of the plot will not be shown.

margin margins of the bounding box

Examples

p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()
p <- p + geom_smooth(method = "lm", se = FALSE)
p + annotate_textp(x = 0.9, y = 0.35, label="A relative linear\nrelationship", hjust=1, color="red")

annotation_ticks Annotation: tick marks

Description

This annotation adds tick marks to an axis

4 annotation_ticks

Usage

annotation_ticks(
sides = "b",
scale = "identity",
scaled = TRUE,
short = unit(0.1, "cm"),
mid = unit(0.2, "cm"),
long = unit(0.3, "cm"),
colour = "black",
size = 0.5,
linetype = 1,
alpha = 1,
color = NULL,
ticks_per_base = NULL,
...

)

Arguments

sides a string that controls which sides of the plot the log ticks appear on. It can be set
to a string containing any of "trbl", for top, right, bottom, and left.

scale character, vector of type of scale attributed to each corresponding side, Default:
’identity’

scaled is the data already log-scaled? This should be TRUE (default) when the data is
already transformed with log10() or when using scale_y_log10(). It should
be FALSE when using coord_trans(y = "log10").

short a grid::unit() object specifying the length of the short tick marks
mid a grid::unit() object specifying the length of the middle tick marks. In base

10, these are the "5" ticks.
long a grid::unit() object specifying the length of the long tick marks. In base 10,

these are the "1" (or "10") ticks.
colour Colour of the tick marks.
size Thickness of tick marks, in mm.
linetype Linetype of tick marks (solid, dashed, etc.)
alpha The transparency of the tick marks.
color An alias for colour.
ticks_per_base integer, number of minor ticks between each pair of major ticks, Default: NULL
... Other parameters passed on to the layer

Details

If scale is of length one it will be replicated to the number of sides given, but if the length of scale
is larger than one it must match the number of sides given. If ticks_per_base is set to NULL the
function infers the number of ticks per base to be the base of the scale - 1, for example log scale is
base exp(1) and log10 and identity are base 10. If ticks_per_base is given it follows the same logic
as scale.

byte_format 5

Author(s)

Jonathan Sidi

Examples

p <- ggplot(msleep, aes(bodywt, brainwt)) + geom_point()

Default behavior

add identity scale minor ticks on y axis
p + annotation_ticks(sides = 'l')

add identity scale minor ticks on x,y axis
p + annotation_ticks(sides = 'lb')

Control number of minor ticks of each side independently

add identity scale minor ticks on x,y axis
p + annotation_ticks(sides = 'lb', ticks_per_base = c(10,5))

log10 scale
p1 <- p + scale_x_log10()

add minor ticks on log10 scale
p1 + annotation_ticks(sides = 'b', scale = 'log10')

add minor ticks on both scales
p1 + annotation_ticks(sides = 'lb', scale = c('identity','log10'))

add minor ticks on both scales, but force x axis to be identity
p1 + annotation_ticks(sides = 'lb', scale = 'identity')

log scale
p2 <- p + scale_x_continuous(trans = 'log')

add minor ticks on log scale
p2 + annotation_ticks(sides = 'b', scale = 'log')

add minor ticks on both scales
p2 + annotation_ticks(sides = 'lb', scale = c('identity','log'))

add minor ticks on both scales, but force x axis to be identity
p2 + annotation_ticks(sides = 'lb', scale = 'identity')

byte_format Bytes formatter: convert to byte measurement and display symbol.

Description

Bytes formatter: convert to byte measurement and display symbol.

6 coord_proj

Usage

byte_format(symbol = "auto", units = "binary", only_highest = TRUE)

Kb(x)

Mb(x)

Gb(x)

bytes(x, symbol = "auto", units = c("binary", "si"), only_highest = FALSE)

Arguments

symbol byte symbol to use. If "auto" the symbol used will be determined by the maxi-
mum value of x. Valid symbols are "b", "K", "Mb", "Gb", "Tb", "Pb", "Eb", "Zb",
and "Yb", along with their upper case equivalents and "iB" equivalents.

units which unit base to use, "binary" (1024 base) or "si" (1000 base) for ISI units.

only_highest Whether to use the unit of the highest number or each number uses its own unit.

x a numeric vector to format

Value

a function with three parameters, x, a numeric vector that returns a character vector, symbol a single
or a vector of byte symbol(s) (e.g. "Kb") desired and the measurement units (traditional binary or
si for ISI metric units).

References

Units of Information (Wikipedia) : http://en.wikipedia.org/wiki/Units_of_information

Examples

byte_format()(sample(3000000000, 10))
bytes(sample(3000000000, 10))
Kb(sample(3000000000, 10))
Mb(sample(3000000000, 10))
Gb(sample(3000000000, 10))

coord_proj Similar to coord_map but uses the PROJ.4 library/package for projec-
tion transformation

Description

The representation of a portion of the earth, which is approximately spherical, onto a flat 2D plane
requires a projection. This is what coord_proj does, using the proj4::project() function from
the proj4 package.

http://en.wikipedia.org/wiki/Units_of_information

coord_proj 7

Usage

coord_proj(
proj = NULL,
inverse = FALSE,
degrees = TRUE,
ellps.default = "sphere",
xlim = NULL,
ylim = NULL

)

Arguments

proj projection definition. If left NULL will default to a Robinson projection

inverse if TRUE inverse projection is performed (from a cartographic projection into
lat/long), otherwise projects from lat/long into a cartographic projection.

degrees if TRUE then the lat/long data is assumed to be in degrees, otherwise in radians

ellps.default default ellipsoid that will be added if no datum or ellipsoid parameter is specified
in proj. Older versions of PROJ.4 didn’t require a datum (and used sphere by
default), but 4.5.0 and higher always require a datum or an ellipsoid. Set to NA
if no datum should be added to proj (e.g. if you specify an ellipsoid directly).

xlim manually specify x limits (in degrees of longitude)

ylim manually specify y limits (in degrees of latitude)

Details

A sample of the output from coord_proj() using the Winkel-Tripel projection: “

Note

It is recommended that you use geom_cartogram with this coordinate system

8 fortify.table

When inverse is FALSE coord_proj makes a fairly large assumption that the coordinates being
transformed are within -180:180 (longitude) and -90:90 (latitude). As such, it truncates all longitude
& latitude input to fit within these ranges. More updates to this new coord_ are planned.

Examples

Not run:
World in Winkel-Tripel

U.S.A. Albers-style
usa <- world[world$region == "USA",]
usa <- usa[!(usa$subregion %in% c("Alaska", "Hawaii")),]

gg <- ggplot()
gg <- gg + geom_cartogram(data=usa, map=usa,

aes(x=long, y=lat, map_id=region))
gg <- gg + coord_proj(

paste0("+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96",
" +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs"))

gg

Showcase Greenland (properly)
greenland <- world[world$region == "Greenland",]

gg <- ggplot()
gg <- gg + geom_cartogram(data=greenland, map=greenland,

aes(x=long, y=lat, map_id=region))
gg <- gg + coord_proj(

paste0("+proj=stere +lat_0=90 +lat_ts=70 +lon_0=-45 +k=1 +x_0=0",
" +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"))

gg

End(Not run)

fortify.table Fortify contingency tables

Description

Fortify contingency tables

Usage

S3 method for class 'table'
fortify(model, data, ...)

GeomTicks 9

Arguments

model the contingency table

data data (unused)

... (unused)

GeomTicks Base ggproto classes for ggplot2

Description

If you are creating a new geom, stat, position, or scale in another package, you’ll need to extend
from ggplot2::Geom, ggplot2::Stat, ggplot2::Position, or ggplot2::Scale.

See Also

ggplot2-ggproto

geom_bkde Display a smooth density estimate.

Description

A kernel density estimate, useful for displaying the distribution of variables with underlying smooth-
ness.

Usage

geom_bkde(
mapping = NULL,
data = NULL,
stat = "bkde",
position = "identity",
bandwidth = NULL,
range.x = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_bkde(
mapping = NULL,
data = NULL,
geom = "area",

10 geom_bkde

position = "stack",
kernel = "normal",
canonical = FALSE,
bandwidth = NULL,
gridsize = 410,
range.x = NULL,
truncate = TRUE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

bandwidth the kernel bandwidth smoothing parameter. see bkde for details. If NULL, it will
be computed for you but will most likely not yield optimal results.

range.x vector containing the minimum and maximum values of x at which to compute
the estimate. see bkde for details

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

geom, stat Use to override the default connection between geom_bkde and stat_bkde.

geom_bkde 11

kernel character string which determines the smoothing kernel. see bkde for details

canonical logical flag: if TRUE, canonically scaled kernels are used. see bkde for details

gridsize the number of equally spaced points at which to estimate the density. see bkde
for details.

truncate logical flag: if TRUE, data with x values outside the range specified by range.x
are ignored. see bkde for details

Details

A sample of the output from geom_bkde():

Aesthetics

geom_bkde understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• color

• fill

• linetype

• size

Computed variables

density density estimate

count density * number of points - useful for stacked density plots

scaled density estimate, scaled to maximum of 1

12 geom_bkde2d

See Also

See geom_histogram, geom_freqpoly for other methods of displaying continuous distribution.
See geom_violin for a compact density display.

Examples

data(geyser, package="MASS")

ggplot(geyser, aes(x=duration)) +
stat_bkde(alpha=1/2)

ggplot(geyser, aes(x=duration)) +
geom_bkde(alpha=1/2)

ggplot(geyser, aes(x=duration)) +
stat_bkde(bandwidth=0.25)

ggplot(geyser, aes(x=duration)) +
geom_bkde(bandwidth=0.25)

geom_bkde2d Contours from a 2d density estimate.

Description

Perform a 2D kernel density estimation using bkde2D and display the results with contours. This
can be useful for dealing with overplotting

Usage

geom_bkde2d(
mapping = NULL,
data = NULL,
stat = "bkde2d",
position = "identity",
bandwidth = NULL,
range.x = NULL,
lineend = "butt",
contour = TRUE,
linejoin = "round",
linemitre = 1,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_bkde2d(

geom_bkde2d 13

mapping = NULL,
data = NULL,
geom = "density2d",
position = "identity",
contour = TRUE,
bandwidth = NULL,
grid_size = c(51, 51),
range.x = NULL,
truncate = TRUE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

bandwidth the kernel bandwidth smoothing parameter. see bkde2D for details. If NULL,
it will be computed for you but will most likely not yield optimal results. see
bkde2D for details

range.x a list containing two vectors, where each vector contains the minimum and maxi-
mum values of x at which to compute the estimate for each direction. see bkde2D
for details

lineend Line end style (round, butt, square).

contour If TRUE, contour the results of the 2d density estimation

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

14 geom_bkde2d

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

geom default geom to use with this stat

grid_size vector containing the number of equally spaced points in each direction over
which the density is to be estimated. see bkde2D for details

truncate logical flag: if TRUE, data with x values outside the range specified by range.x
are ignored. see bkde2D for details

Details

A sample of the output from geom_bkde2d():

Computed variables

Same as stat_contour

See Also

geom_contour for contour drawing geom, stat_sum for another way of dealing with overplotting

geom_cartogram 15

Examples

m <- ggplot(faithful, aes(x = eruptions, y = waiting)) +
geom_point() +
xlim(0.5, 6) +
ylim(40, 110)

m + geom_bkde2d(bandwidth=c(0.5, 4))

m + stat_bkde2d(bandwidth=c(0.5, 4), aes(fill = ..level..), geom = "polygon")

If you map an aesthetic to a categorical variable, you will get a
set of contours for each value of that variable
set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000),]
d <- ggplot(dsmall, aes(x, y)) +

geom_bkde2d(bandwidth=c(0.5, 0.5), aes(colour = cut))
d

If we turn contouring off, we can use use geoms like tiles:
d + stat_bkde2d(bandwidth=c(0.5, 0.5), geom = "raster",

aes(fill = ..density..), contour = FALSE)

Or points:
d + stat_bkde2d(bandwidth=c(0.5, 0.5), geom = "point",

aes(size = ..density..), contour = FALSE)

geom_cartogram Map polygons layer enabling the display of show statistical informa-
tion

Description

This replicates the old behaviour of geom_map(), enabling specifying of x and y aesthetics.

Usage

geom_cartogram(
mapping = NULL,
data = NULL,
stat = "identity",
...,
map,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

16 geom_cartogram

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

map Data frame that contains the map coordinates. This will typically be created us-
ing fortify on a spatial object. It must contain columns x, long or longitude,
y, lat or latitude and region or id.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_cartogram understands the following aesthetics (required aesthetics are in bold):

• map_id

• alpha

• colour

• fill

• group

• linetype

• size

• x

• y

geom_cartogram 17

Examples

Not run:
When using geom_polygon, you will typically need two data frames:
one contains the coordinates of each polygon (positions), and the
other the values associated with each polygon (values). An id
variable links the two together

ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))

values <- data.frame(
id = ids,
value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5)

)

positions <- data.frame(
id = rep(ids, each = 4),
x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3,
0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3),
y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5,
2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2)

)

ggplot() +
geom_cartogram(aes(x, y, map_id = id), map = positions, data=positions)

ggplot() +
geom_cartogram(aes(x, y, map_id = id), map = positions, data=positions) +
geom_cartogram(data=values, map=positions, aes(fill = value, map_id=id))

ggplot() +
geom_cartogram(aes(x, y, map_id = id), map = positions, data=positions) +
geom_cartogram(data=values, map=positions, aes(fill = value, map_id=id)) +
ylim(0, 3)

Better example
crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests)
crimesm <- reshape2::melt(crimes, id = 1)

if (require(maps)) {

states_map <- map_data("state")

ggplot() +
geom_cartogram(aes(long, lat, map_id = region), map = states_map, data=states_map) +
geom_cartogram(aes(fill = Murder, map_id = state), map=states_map, data=crimes)

last_plot() + coord_map("polyconic")

ggplot() +
geom_cartogram(aes(long, lat, map_id=region), map = states_map, data=states_map) +
geom_cartogram(aes(fill = value, map_id=state), map = states_map, data=crimesm) +
coord_map("polyconic") +

18 geom_dumbbell

facet_wrap(~ variable)
}

End(Not run)

geom_dumbbell Dumbbell charts

Description

The dumbbell geom is used to create dumbbell charts.

Usage

geom_dumbbell(
mapping = NULL,
data = NULL,
...,
colour_x = NULL,
size_x = NULL,
colour_xend = NULL,
size_xend = NULL,
dot_guide = FALSE,
dot_guide_size = NULL,
dot_guide_colour = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
position = "identity"

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom_dumbbell 19

... other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red" or size = 3. They may also be
parameters to the paired geom/stat.

colour_x the colour of the start point

size_x the size of the start point

colour_xend the colour of the end point

size_xend the size of the end point

dot_guide if TRUE, a leading dotted line will be placed before the left-most dumbbell point

dot_guide_size, dot_guide_colour
singe-value aesthetics for dot_guide

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

Details

Dumbbell dot plots — dot plots with two or more series of data — are an alternative to the clustered
bar chart or slope graph.

Aesthetics

@section Aesthetics: geom_segment()understands the following aesthetics (required aesthetics are
in bold):

• x

• y

• xendoryend

• alpha

• colour

• group

• linetype

• linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs").

20 geom_encircle

Examples

library(ggplot2)

df <- data.frame(trt=LETTERS[1:5], l=c(20, 40, 10, 30, 50), r=c(70, 50, 30, 60, 80))

ggplot(df, aes(y=trt, x=l, xend=r)) +
geom_dumbbell(size=3, color="#e3e2e1",

colour_x = "#5b8124", colour_xend = "#bad744",
dot_guide=TRUE, dot_guide_size=0.25) +

labs(x=NULL, y=NULL, title="ggplot2 geom_dumbbell with dot guide") +
theme_minimal() +
theme(panel.grid.major.x=element_line(size=0.05))

with vertical dodging
df2 <- data.frame(trt = c(LETTERS[1:5], "D"),

l = c(20, 40, 10, 30, 50, 40),
r = c(70, 50, 30, 60, 80, 70))

ggplot(df2, aes(y=trt, x=l, xend=r)) +
geom_dumbbell(size=3, color="#e3e2e1",

colour_x = "#5b8124", colour_xend = "#bad744",
dot_guide=TRUE, dot_guide_size=0.25,
position=position_dodgev(height=0.4)) +

labs(x=NULL, y=NULL, title="ggplot2 geom_dumbbell with dot guide") +
theme_minimal() +
theme(panel.grid.major.x=element_line(size=0.05))

geom_encircle Automatically enclose points in a polygon

Description

Automatically enclose points in a polygon

Usage

geom_encircle(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_encircle 21

Arguments

mapping mapping

data data

stat stat

position position

na.rm na.rm

show.legend show.legend

inherit.aes inherit.aes

... dots

Details

A sample of the output from geom_encircle():

Value

adds a circle around the specified points

Author(s)

Ben Bolker

Examples

d <- data.frame(x=c(1,1,2),y=c(1,2,2)*100)

gg <- ggplot(d,aes(x,y))
gg <- gg + scale_x_continuous(expand=c(0.5,1))
gg <- gg + scale_y_continuous(expand=c(0.5,1))

22 geom_lollipop

gg + geom_encircle(s_shape=1, expand=0) + geom_point()

gg + geom_encircle(s_shape=1, expand=0.1, colour="red") + geom_point()

gg + geom_encircle(s_shape=0.5, expand=0.1, colour="purple") + geom_point()

gg + geom_encircle(data=subset(d, x==1), colour="blue", spread=0.02) +
geom_point()

gg +geom_encircle(data=subset(d, x==2), colour="cyan", spread=0.04) +
geom_point()

gg <- ggplot(mpg, aes(displ, hwy))
gg + geom_encircle(data=subset(mpg, hwy>40)) + geom_point()
gg + geom_encircle(aes(group=manufacturer)) + geom_point()
gg + geom_encircle(aes(group=manufacturer,fill=manufacturer),alpha=0.4)+

geom_point()
gg + geom_encircle(aes(group=manufacturer,colour=manufacturer))+

geom_point()

ss <- subset(mpg,hwy>31 & displ<2)

gg + geom_encircle(data=ss, colour="blue", s_shape=0.9, expand=0.07) +
geom_point() + geom_point(data=ss, colour="blue")

geom_lollipop Lollipop charts

Description

The lollipop geom is used to create lollipop charts.

Usage

geom_lollipop(
mapping = NULL,
data = NULL,
...,
horizontal = FALSE,
point.colour = NULL,
point.size = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_lollipop 23

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

... other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red" or size = 3. They may also be
parameters to the paired geom/stat.

horizontal horizontal is FALSE (the default), the function will draw the lollipops up from
the X axis (i.e. it will set xend to x & yend to 0). If TRUE, it wiill set yend to y &
xend to 0). Make sure you map the x & y aesthetics accordingly. This parameter
helps avoid the need for coord_flip().

point.colour the colour of the point

point.size the size of the point

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

Lollipop charts are the creation of Andy Cotgreave going back to 2011. They are a combination of
a thin segment, starting at with a dot at the top and are a suitable alternative to or replacement for
bar charts.

Use the horizontal parameter to abate the need for coord_flip() (see the Arguments section for
details).

A sample of the output from geom_lollipop():

24 geom_lollipop

Aesthetics

@section Aesthetics: geom_point()understands the following aesthetics (required aesthetics are
in bold):

• x

• y

• alpha

• colour

• fill

• group

• shape

• size

• stroke

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Examples

df <- data.frame(trt=LETTERS[1:10],
value=seq(100, 10, by=-10))

ggplot(df, aes(trt, value)) + geom_lollipop()

ggplot(df, aes(value, trt)) + geom_lollipop(horizontal=TRUE)

geom_spikelines 25

geom_spikelines Draw spikelines on a plot

Description

Segment reference lines that originate at an point

Usage

geom_spikelines(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
arrow = NULL,
lineend = "butt",
linejoin = "round",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

26 geom_stateface

arrow Arrow specification, as created by grid::arrow().

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Author(s)

Jonathan Sidi

Examples

mtcars$name <- rownames(mtcars)

p <- ggplot(data = mtcars, aes(x=mpg,y=disp)) + geom_point()

p + geom_spikelines(data = mtcars[mtcars$carb==4,],linetype = 2)

p + geom_spikelines(data = mtcars[mtcars$carb==4,],aes(colour = factor(gear)), linetype = 2)

Not run:
require(ggrepel)
p + geom_spikelines(data = mtcars[mtcars$carb==4,],aes(colour = factor(gear)), linetype = 2) +
ggrepel::geom_label_repel(data = mtcars[mtcars$carb==4,],aes(label = name))

End(Not run)

geom_stateface Use ProPublica’s StateFace font in ggplot2 plots

Description

The label parameter can be either a 2-letter state abbreviation or a full state name. geom_stateface()
will take care of the translation to StateFace font glyph characters.

geom_stateface 27

Usage

geom_stateface(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Cannot be jointy specified with nudge_x or nudge_y.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

nudge_x, nudge_y
Horizontal and vertical adjustment to nudge l abels by. Useful for offsetting text
from points, particularly on discrete scales.

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

28 geom_stateface

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The package will also take care of loading the StateFace font for PDF and other devices, but to use
it with the on-screen ggplot2 device, you’ll need to install the font on your system.

ggalt ships with a copy of the StateFace TTF font. You can run show_stateface() to get the
filesystem location and then load the font manually from there.

A sample of the output from geom_stateface():

See Also

Other StateFace operations: load_stateface(), show_stateface()

Examples

Not run:
library(ggplot2)
library(ggalt)

Run show_stateface() to see the location of the TTF StateFace font
You need to install it for it to work

set.seed(1492)

geom_ubar 29

dat <- data.frame(state=state.abb,
x=sample(100, 50),
y=sample(100, 50),
col=sample(c("#b2182b", "#2166ac"), 50, replace=TRUE),
sz=sample(6:15, 50, replace=TRUE),
stringsAsFactors=FALSE)

gg <- ggplot(dat, aes(x=x, y=y))
gg <- gg + geom_stateface(aes(label=state, color=col, size=sz))
gg <- gg + scale_color_identity()
gg <- gg + scale_size_identity()
gg

End(Not run)

geom_ubar Uniform "bar" charts

Description

I’ve been using geom_segment more to make "bar" charts, setting xend to whatever x is and yend
to 0. The bar widths remain constant without any tricks and you have granular control over the
segment width. I decided it was time to make a geom.

Usage

geom_ubar(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

30 geom_ubar

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

... other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red" or size = 3. They may also be
parameters to the paired geom/stat.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

‘geom_ubar“ understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• group

• linetype

• size

Examples

library(ggplot2)

data(economics)
ggplot(economics, aes(date, uempmed)) +

geom_ubar()

geom_xspline 31

geom_xspline Connect control points/observations with an X-spline

Description

Draw an X-spline, a curve drawn relative to control points/observations. Patterned after geom_line
in that it orders the points by x first before computing the splines.

Usage

geom_xspline(
mapping = NULL,
data = NULL,
stat = "xspline",
position = "identity",
na.rm = TRUE,
show.legend = NA,
inherit.aes = TRUE,
spline_shape = -0.25,
open = TRUE,
rep_ends = TRUE,
...

)

stat_xspline(
mapping = NULL,
data = NULL,
geom = "line",
position = "identity",
na.rm = TRUE,
show.legend = NA,
inherit.aes = TRUE,
spline_shape = -0.25,
open = TRUE,
rep_ends = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

32 geom_xspline

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

spline_shape A numeric vector of values between -1 and 1, which control the shape of the
spline relative to the control points.

open A logical value indicating whether the spline is an open or a closed shape.
rep_ends For open X-splines, a logical value indicating whether the first and last control

points should be replicated for drawing the curve. Ignored for closed X-splines.
... Other arguments passed on to layer(). These are often aesthetics, used to set

an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

geom, stat Use to override the default connection between geom_xspline and stat_xspline.

Details

A sample of the output from geom_xspline():

geom_xspline 33

An X-spline is a line drawn relative to control points. For each control point, the line may pass
through (interpolate) the control point or it may only approach (approximate) the control point; the
behaviour is determined by a shape parameter for each control point.

If the shape parameter is greater than zero, the spline approximates the control points (and is very
similar to a cubic B-spline when the shape is 1). If the shape parameter is less than zero, the spline
interpolates the control points (and is very similar to a Catmull-Rom spline when the shape is -1).
If the shape parameter is 0, the spline forms a sharp corner at that control point.

For open X-splines, the start and end control points must have a shape of 0 (and non-zero values are
silently converted to zero).

For open X-splines, by default the start and end control points are replicated before the curve is
drawn. A curve is drawn between (interpolating or approximating) the second and third of each set
of four control points, so this default behaviour ensures that the resulting curve starts at the first
control point you have specified and ends at the last control point. The default behaviour can be
turned off via the repEnds argument.

Aesthetics

geom_xspline understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• color

• linetype

• size

Computed variables

• x

• y

References

Blanc, C. and Schlick, C. (1995), "X-splines : A Spline Model Designed for the End User", in Pro-
ceedings of SIGGRAPH 95, pp. 377-386. http://dept-info.labri.fr/~schlick/DOC/sig1.
html

See Also

geom_line: Connect observations (x order); geom_path: Connect observations; geom_polygon:
Filled paths (polygons); geom_segment: Line segments; xspline; grid.xspline

Other xspline implementations: geom_xspline2()

http://dept-info.labri.fr/~schlick/DOC/sig1.html
http://dept-info.labri.fr/~schlick/DOC/sig1.html

34 geom_xspline2

Examples

set.seed(1492)
dat <- data.frame(x=c(1:10, 1:10, 1:10),

y=c(sample(15:30, 10), 2*sample(15:30, 10),
3*sample(15:30, 10)),

group=factor(c(rep(1, 10), rep(2, 10), rep(3, 10)))
)

ggplot(dat, aes(x, y, group=group, color=group)) +
geom_point() +
geom_line()

ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point() +
geom_line() +
geom_smooth(se=FALSE, linetype="dashed", size=0.5)

ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point(color="black") +
geom_smooth(se=FALSE, linetype="dashed", size=0.5) +
geom_xspline(size=0.5)

ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point(color="black") +
geom_smooth(se=FALSE, linetype="dashed", size=0.5) +
geom_xspline(spline_shape=-0.4, size=0.5)

ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point(color="black") +
geom_smooth(se=FALSE, linetype="dashed", size=0.5) +
geom_xspline(spline_shape=0.4, size=0.5)

ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point(color="black") +
geom_smooth(se=FALSE, linetype="dashed", size=0.5) +
geom_xspline(spline_shape=1, size=0.5)

ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point(color="black") +
geom_smooth(se=FALSE, linetype="dashed", size=0.5) +
geom_xspline(spline_shape=0, size=0.5)

ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point(color="black") +
geom_smooth(se=FALSE, linetype="dashed", size=0.5) +
geom_xspline(spline_shape=-1, size=0.5)

geom_xspline2 Alternative implemenation for connecting control points/observations
with an X-spline

geom_xspline2 35

Description

Alternative implemenation for connecting control points/observations with an X-spline

Usage

geom_xspline2(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

36 load_stateface

Value

creates a spline curve

Author(s)

Ben Bolker

See Also

Other xspline implementations: geom_xspline()

ggalt Extra Geoms, Stats, Coords, Scales & Fonts for ’ggplot2’

Description

A package containing additional geoms, coords, stats, scales & fonts for ggplot2 2.0+

Author(s)

Bob Rudis (@hrbrmstr)

load_stateface Load stateface font

Description

Makes the ProPublica StateFace font available to PDF, PostScript, et. al. devices.

Usage

load_stateface()

See Also

Other StateFace operations: geom_stateface(), show_stateface()

position_dodgev 37

position_dodgev Vertically dodge position

Description

Vertically dodge position

Usage

position_dodgev(height = NULL)

Arguments

height numeric, height of vertical dodge, Default: NULL

Note

position-dodgev(): unmodified from lionel-/ggstance/R/position-dodgev.R 73f521384ae8ea277db5f7d5a2854004aa18f947

Author(s)

@ggstance authors

Examples

if(interactive()){

dat <- data.frame(
trt = c(LETTERS[1:5], "D"),
l = c(20, 40, 10, 30, 50, 40),
r = c(70, 50, 30, 60, 80, 70)

)

ggplot(dat, aes(y=trt, x=l, xend=r)) +
geom_dumbbell(size=3, color="#e3e2e1",

colour_x = "#5b8124", colour_xend = "#bad744",
dot_guide=TRUE, dot_guide_size=0.25,
position=position_dodgev(height=0.8)) +

labs(x=NULL, y=NULL, title="ggplot2 geom_dumbbell with dot guide") +
theme_minimal() +
theme(panel.grid.major.x=element_line(size=0.05))

}

38 stat_ash

show_stateface Show location of StateFace font

Description

Displays the path to the StateFace font. For the font to work in the on-screen plot device for ggplot2,
you need to install the font on your system

Usage

show_stateface()

See Also

Other StateFace operations: geom_stateface(), load_stateface()

stat_ash Compute and display a univariate averaged shifted histogram (poly-
nomial kernel)

Description

See bin1 & ash1 for more information.

Usage

stat_ash(
mapping = NULL,
data = NULL,
geom = "area",
position = "stack",
ab = NULL,
nbin = 50,
m = 5,
kopt = c(2, 2),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_ash 39

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default Geom

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

ab half-open interval for bins [a,b). If no value is specified, the range of x is
stretched by 5% at each end and used the interval.

nbin number of bins desired. Default 50.

m integer smoothing parameter; Default 5.

kopt vector of length 2 specifying the kernel, which is proportional to (1 - abs(i/m)^kopt(1)
)i^kopt(2); (2,2)=biweight (default); (0,0)=uniform; (1,0)=triangle; (2,1)=Epanech-
nikov; (2,3)=triweight.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Details

A sample of the output from stat_ash():

40 stat_ash

Aesthetics

geom_ash understands the following aesthetics (required aesthetics are in bold):

• x

• alpha

• color

• fill

• linetype

• size

Computed variables

density ash density estimate

References

David Scott (1992), "Multivariate Density Estimation," John Wiley, (chapter 5 in particular).

B. W. Silverman (1986), "Density Estimation for Statistics and Data Analysis," Chapman & Hall.

Examples

compare
library(gridExtra)
set.seed(1492)
dat <- data.frame(x=rnorm(100))
grid.arrange(ggplot(dat, aes(x)) + stat_ash(),

ggplot(dat, aes(x)) + stat_bkde(),
ggplot(dat, aes(x)) + stat_density(),
nrow=3)

stat_stepribbon 41

cols <- RColorBrewer::brewer.pal(3, "Dark2")
ggplot(dat, aes(x)) +

stat_ash(alpha=1/2, fill=cols[3]) +
stat_bkde(alpha=1/2, fill=cols[2]) +
stat_density(alpha=1/2, fill=cols[1]) +
geom_rug() +
labs(x=NULL, y="density/estimate") +
scale_x_continuous(expand=c(0,0)) +
theme_bw() +
theme(panel.grid=element_blank()) +
theme(panel.border=element_blank())

stat_stepribbon Step ribbon statistic

Description

Provides stairstep values for ribbon plots

Usage

stat_stepribbon(
mapping = NULL,
data = NULL,
geom = "ribbon",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
direction = "hv",
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

42 stat_stepribbon

geom which geom to use; defaults to "ribbon"

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

direction hv for horizontal-veritcal steps, vh for vertical-horizontal steps

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

References

https://groups.google.com/forum/?fromgroups=#!topic/ggplot2/9cFWHaH1CPs

Examples

x <- 1:10
df <- data.frame(x=x, y=x+10, ymin=x+7, ymax=x+12)

gg <- ggplot(df, aes(x, y))
gg <- gg + geom_ribbon(aes(ymin=ymin, ymax=ymax),

stat="stepribbon", fill="#b2b2b2")
gg <- gg + geom_step(color="#2b2b2b")
gg

gg <- ggplot(df, aes(x, y))
gg <- gg + geom_ribbon(aes(ymin=ymin, ymax=ymax),

stat="stepribbon", fill="#b2b2b2",
direction="hv")

gg <- gg + geom_step(color="#2b2b2b")
gg

https://groups.google.com/forum/?fromgroups=#!topic/ggplot2/9cFWHaH1CPs

Index

∗ StateFace operations
geom_stateface, 26
load_stateface, 36
show_stateface, 38

∗ datasets
GeomTicks, 9
position_dodgev, 37

∗ xspline implementations
geom_xspline, 31
geom_xspline2, 34

aes(), 10, 13, 16, 18, 23, 25, 27, 29, 31, 35,
39, 41

alpha, 19, 24
annotate_textp, 2
annotation_ticks, 3
ash1, 38

bin1, 38
bkde, 10, 11
bkde2D, 13, 14
borders(), 10, 14, 16, 19, 23, 26, 28, 30, 32,

35, 39, 42
byte_format, 5
bytes (byte_format), 5

colour, 19, 24
coord_proj, 6

fill, 24
fortify, 16
fortify(), 10, 13, 16, 18, 23, 25, 27, 29, 32,

35, 39, 41
fortify.table, 8

Gb (byte_format), 5
geom_bkde, 9
geom_bkde2d, 12
geom_cartogram, 15
geom_contour, 14
geom_dumbbell, 18

geom_encircle, 20
geom_freqpoly, 12
geom_histogram, 12
geom_line, 33
geom_lollipop, 22
geom_path, 33
geom_polygon, 33
geom_segment, 33
geom_spikelines, 25
geom_stateface, 26, 36, 38
geom_ubar, 29
geom_violin, 12
geom_xspline, 31, 36
geom_xspline2, 33, 34
GeomCartogram (GeomTicks), 9
GeomTicks, 9
ggalt, 36
ggplot(), 10, 13, 16, 18, 23, 25, 27, 29, 31,

35, 39, 41
grid.xspline, 33
grid::arrow(), 26
grid::unit(), 4
group, 19, 24

Kb (byte_format), 5

layer, 19, 23
layer(), 10, 14, 16, 25, 27, 32, 35, 39, 42
linetype, 19
linewidth, 19
load_stateface, 28, 36, 38

Mb (byte_format), 5

position_dodgev, 37
PositionDodgev (position_dodgev), 37

shape, 24
show_stateface, 28, 36, 38
size, 24
stat_ash, 38

43

44 INDEX

stat_bkde (geom_bkde), 9
stat_bkde2d (geom_bkde2d), 12
stat_contour, 14
stat_stepribbon, 41
stat_sum, 14
stat_xspline (geom_xspline), 31

x, 19, 24
xend, 19
xspline, 33

y, 19, 24
yend, 19

	annotate_textp
	annotation_ticks
	byte_format
	coord_proj
	fortify.table
	GeomTicks
	geom_bkde
	geom_bkde2d
	geom_cartogram
	geom_dumbbell
	geom_encircle
	geom_lollipop
	geom_spikelines
	geom_stateface
	geom_ubar
	geom_xspline
	geom_xspline2
	ggalt
	load_stateface
	position_dodgev
	show_stateface
	stat_ash
	stat_stepribbon
	Index

