Title: | Extra Coordinate Systems, 'Geoms', Statistical Transformations, Scales and Fonts for 'ggplot2' |
---|---|
Description: | A compendium of new geometries, coordinate systems, statistical transformations, scales and fonts for 'ggplot2', including splines, 1d and 2d densities, univariate average shifted histograms, a new map coordinate system based on the 'PROJ.4'-library along with geom_cartogram() that mimics the original functionality of geom_map(), formatters for "bytes", a stat_stepribbon() function, increased 'plotly' compatibility and the 'StateFace' open source font 'ProPublica'. Further new functionality includes lollipop charts, dumbbell charts, the ability to encircle points and coordinate-system-based text annotations. |
Authors: | Bob Rudis [aut, cre] , Ben Bolker [aut, ctb] (Encircling & additional splines), Ben Marwick [ctb] (General codebase cleanup), Jan Schulz [aut, ctb] (Annotations), Rosen Matev [ctb] (Original annotate_textp implementation on stackoverflow), ProPublica [dtc] (StateFace font), Aditya Kothari [aut, ctb] (Core functionality of horizon plots), Ather [dtc] (Core functionality of horizon plots), Jonathan Sidi [aut, ctb] (Annotation ticks), Tarcisio Fedrizzi [ctb] (Bytes formatter) |
Maintainer: | Bob Rudis <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.6.1 |
Built: | 2024-12-25 04:57:35 UTC |
Source: | https://github.com/hrbrmstr/ggalt |
Annotates the plot with text. Compared to annotate("text",...)
, the
placement of the annotations is specified in plot coordinates (from 0 to 1)
instead of data coordinates.
annotate_textp( label, x, y, facets = NULL, hjust = 0, vjust = 0, color = "black", alpha = NA, family = theme_get()$text$family, size = theme_get()$text$size, fontface = 1, lineheight = 1, box_just = ifelse(c(x, y) < 0.5, 0, 1), margin = unit(size/2, "pt") )
annotate_textp( label, x, y, facets = NULL, hjust = 0, vjust = 0, color = "black", alpha = NA, family = theme_get()$text$family, size = theme_get()$text$size, fontface = 1, lineheight = 1, box_just = ifelse(c(x, y) < 0.5, 0, 1), margin = unit(size/2, "pt") )
label |
text annotation to be placed on the plot |
x , y
|
positions of the individual annotations, in plot coordinates (0..1) instead of data coordinates! |
facets |
facet positions of the individual annotations |
hjust , vjust
|
horizontal and vertical justification of the text relative to the bounding box |
color |
alpha, family, size, fontface, lineheight font properties |
alpha , family , size , fontface , lineheight
|
standard aesthetic customizations |
box_just |
placement of the bounding box for the text relative to x,y coordinates. Per default, the box is placed to the center of the plot. Be aware that parts of the box which are outside of the visible region of the plot will not be shown. |
margin |
margins of the bounding box |
p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point() p <- p + geom_smooth(method = "lm", se = FALSE) p + annotate_textp(x = 0.9, y = 0.35, label="A relative linear\nrelationship", hjust=1, color="red")
p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point() p <- p + geom_smooth(method = "lm", se = FALSE) p + annotate_textp(x = 0.9, y = 0.35, label="A relative linear\nrelationship", hjust=1, color="red")
This annotation adds tick marks to an axis
annotation_ticks( sides = "b", scale = "identity", scaled = TRUE, short = unit(0.1, "cm"), mid = unit(0.2, "cm"), long = unit(0.3, "cm"), colour = "black", size = 0.5, linetype = 1, alpha = 1, color = NULL, ticks_per_base = NULL, ... )
annotation_ticks( sides = "b", scale = "identity", scaled = TRUE, short = unit(0.1, "cm"), mid = unit(0.2, "cm"), long = unit(0.3, "cm"), colour = "black", size = 0.5, linetype = 1, alpha = 1, color = NULL, ticks_per_base = NULL, ... )
sides |
a string that controls which sides of the plot the log ticks appear on.
It can be set to a string containing any of |
scale |
character, vector of type of scale attributed to each corresponding side, Default: 'identity' |
scaled |
is the data already log-scaled? This should be |
short |
a |
mid |
a |
long |
a |
colour |
Colour of the tick marks. |
size |
Thickness of tick marks, in mm. |
linetype |
Linetype of tick marks ( |
alpha |
The transparency of the tick marks. |
color |
An alias for |
ticks_per_base |
integer, number of minor ticks between each pair of major ticks, Default: NULL |
... |
Other parameters passed on to the layer |
If scale is of length one it will be replicated to the number of sides given, but if the length of scale is larger than one it must match the number of sides given. If ticks_per_base is set to NULL the function infers the number of ticks per base to be the base of the scale - 1, for example log scale is base exp(1) and log10 and identity are base 10. If ticks_per_base is given it follows the same logic as scale.
Jonathan Sidi
p <- ggplot(msleep, aes(bodywt, brainwt)) + geom_point() # Default behavior # add identity scale minor ticks on y axis p + annotation_ticks(sides = 'l') # add identity scale minor ticks on x,y axis p + annotation_ticks(sides = 'lb') # Control number of minor ticks of each side independently # add identity scale minor ticks on x,y axis p + annotation_ticks(sides = 'lb', ticks_per_base = c(10,5)) # log10 scale p1 <- p + scale_x_log10() # add minor ticks on log10 scale p1 + annotation_ticks(sides = 'b', scale = 'log10') # add minor ticks on both scales p1 + annotation_ticks(sides = 'lb', scale = c('identity','log10')) # add minor ticks on both scales, but force x axis to be identity p1 + annotation_ticks(sides = 'lb', scale = 'identity') # log scale p2 <- p + scale_x_continuous(trans = 'log') # add minor ticks on log scale p2 + annotation_ticks(sides = 'b', scale = 'log') # add minor ticks on both scales p2 + annotation_ticks(sides = 'lb', scale = c('identity','log')) # add minor ticks on both scales, but force x axis to be identity p2 + annotation_ticks(sides = 'lb', scale = 'identity')
p <- ggplot(msleep, aes(bodywt, brainwt)) + geom_point() # Default behavior # add identity scale minor ticks on y axis p + annotation_ticks(sides = 'l') # add identity scale minor ticks on x,y axis p + annotation_ticks(sides = 'lb') # Control number of minor ticks of each side independently # add identity scale minor ticks on x,y axis p + annotation_ticks(sides = 'lb', ticks_per_base = c(10,5)) # log10 scale p1 <- p + scale_x_log10() # add minor ticks on log10 scale p1 + annotation_ticks(sides = 'b', scale = 'log10') # add minor ticks on both scales p1 + annotation_ticks(sides = 'lb', scale = c('identity','log10')) # add minor ticks on both scales, but force x axis to be identity p1 + annotation_ticks(sides = 'lb', scale = 'identity') # log scale p2 <- p + scale_x_continuous(trans = 'log') # add minor ticks on log scale p2 + annotation_ticks(sides = 'b', scale = 'log') # add minor ticks on both scales p2 + annotation_ticks(sides = 'lb', scale = c('identity','log')) # add minor ticks on both scales, but force x axis to be identity p2 + annotation_ticks(sides = 'lb', scale = 'identity')
Bytes formatter: convert to byte measurement and display symbol.
byte_format(symbol = "auto", units = "binary", only_highest = TRUE) Kb(x) Mb(x) Gb(x) bytes(x, symbol = "auto", units = c("binary", "si"), only_highest = FALSE)
byte_format(symbol = "auto", units = "binary", only_highest = TRUE) Kb(x) Mb(x) Gb(x) bytes(x, symbol = "auto", units = c("binary", "si"), only_highest = FALSE)
symbol |
byte symbol to use. If " |
units |
which unit base to use, " |
only_highest |
Whether to use the unit of the highest number or each number uses its own unit. |
x |
a numeric vector to format |
a function with three parameters, x
, a numeric vector that
returns a character vector, symbol
a single or a vector of byte
symbol(s) (e.g. "Kb
") desired and the measurement units
(traditional binary
or si
for ISI metric units).
Units of Information (Wikipedia) : http://en.wikipedia.org/wiki/Units_of_information
byte_format()(sample(3000000000, 10)) bytes(sample(3000000000, 10)) Kb(sample(3000000000, 10)) Mb(sample(3000000000, 10)) Gb(sample(3000000000, 10))
byte_format()(sample(3000000000, 10)) bytes(sample(3000000000, 10)) Kb(sample(3000000000, 10)) Mb(sample(3000000000, 10)) Gb(sample(3000000000, 10))
coord_map
but uses the PROJ.4 library/package for projection
transformationThe representation of a portion of the earth, which is approximately
spherical, onto a flat 2D plane requires a projection. This is what
coord_proj
does, using the proj4::project()
function from
the proj4
package.
coord_proj( proj = NULL, inverse = FALSE, degrees = TRUE, ellps.default = "sphere", xlim = NULL, ylim = NULL )
coord_proj( proj = NULL, inverse = FALSE, degrees = TRUE, ellps.default = "sphere", xlim = NULL, ylim = NULL )
proj |
projection definition. If left |
inverse |
if |
degrees |
if |
ellps.default |
default ellipsoid that will be added if no datum or
ellipsoid parameter is specified in proj. Older versions of PROJ.4
didn't require a datum (and used sphere by default), but 4.5.0 and
higher always require a datum or an ellipsoid. Set to |
xlim |
manually specify x limits (in degrees of longitude) |
ylim |
manually specify y limits (in degrees of latitude) |
A sample of the output from coord_proj()
using the Winkel-Tripel projection:
It is recommended that you use geom_cartogram
with this coordinate system
When inverse
is FALSE
coord_proj
makes a fairly
large assumption that the coordinates being transformed are within
-180:180 (longitude) and -90:90 (latitude). As such, it truncates
all longitude & latitude input to fit within these ranges. More updates
to this new coord_
are planned.
## Not run: # World in Winkel-Tripel # U.S.A. Albers-style usa <- world[world$region == "USA",] usa <- usa[!(usa$subregion %in% c("Alaska", "Hawaii")),] gg <- ggplot() gg <- gg + geom_cartogram(data=usa, map=usa, aes(x=long, y=lat, map_id=region)) gg <- gg + coord_proj( paste0("+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96", " +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs")) gg # Showcase Greenland (properly) greenland <- world[world$region == "Greenland",] gg <- ggplot() gg <- gg + geom_cartogram(data=greenland, map=greenland, aes(x=long, y=lat, map_id=region)) gg <- gg + coord_proj( paste0("+proj=stere +lat_0=90 +lat_ts=70 +lon_0=-45 +k=1 +x_0=0", " +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs")) gg ## End(Not run)
## Not run: # World in Winkel-Tripel # U.S.A. Albers-style usa <- world[world$region == "USA",] usa <- usa[!(usa$subregion %in% c("Alaska", "Hawaii")),] gg <- ggplot() gg <- gg + geom_cartogram(data=usa, map=usa, aes(x=long, y=lat, map_id=region)) gg <- gg + coord_proj( paste0("+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96", " +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs")) gg # Showcase Greenland (properly) greenland <- world[world$region == "Greenland",] gg <- ggplot() gg <- gg + geom_cartogram(data=greenland, map=greenland, aes(x=long, y=lat, map_id=region)) gg <- gg + coord_proj( paste0("+proj=stere +lat_0=90 +lat_ts=70 +lon_0=-45 +k=1 +x_0=0", " +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs")) gg ## End(Not run)
Fortify contingency tables
## S3 method for class 'table' fortify(model, data, ...)
## S3 method for class 'table' fortify(model, data, ...)
model |
the contingency table |
data |
data (unused) |
... |
(unused) |
A kernel density estimate, useful for displaying the distribution of variables with underlying smoothness.
geom_bkde( mapping = NULL, data = NULL, stat = "bkde", position = "identity", bandwidth = NULL, range.x = NULL, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... ) stat_bkde( mapping = NULL, data = NULL, geom = "area", position = "stack", kernel = "normal", canonical = FALSE, bandwidth = NULL, gridsize = 410, range.x = NULL, truncate = TRUE, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
geom_bkde( mapping = NULL, data = NULL, stat = "bkde", position = "identity", bandwidth = NULL, range.x = NULL, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... ) stat_bkde( mapping = NULL, data = NULL, geom = "area", position = "stack", kernel = "normal", canonical = FALSE, bandwidth = NULL, gridsize = 410, range.x = NULL, truncate = TRUE, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
bandwidth |
the kernel bandwidth smoothing parameter. see
|
range.x |
vector containing the minimum and maximum values of x at which
to compute the estimate. see |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
Other arguments passed on to |
geom , stat
|
Use to override the default connection between
|
kernel |
character string which determines the smoothing kernel. see
|
canonical |
logical flag: if TRUE, canonically scaled kernels are used.
see |
gridsize |
the number of equally spaced points at which to estimate the
density. see |
truncate |
logical flag: if TRUE, data with x values outside the range
specified by range.x are ignored. see |
A sample of the output from geom_bkde()
:
geom_bkde
understands the following aesthetics (required aesthetics
are in bold):
x
y
alpha
color
fill
linetype
size
density estimate
density * number of points - useful for stacked density plots
density estimate, scaled to maximum of 1
See geom_histogram
, geom_freqpoly
for
other methods of displaying continuous distribution.
See geom_violin
for a compact density display.
data(geyser, package="MASS") ggplot(geyser, aes(x=duration)) + stat_bkde(alpha=1/2) ggplot(geyser, aes(x=duration)) + geom_bkde(alpha=1/2) ggplot(geyser, aes(x=duration)) + stat_bkde(bandwidth=0.25) ggplot(geyser, aes(x=duration)) + geom_bkde(bandwidth=0.25)
data(geyser, package="MASS") ggplot(geyser, aes(x=duration)) + stat_bkde(alpha=1/2) ggplot(geyser, aes(x=duration)) + geom_bkde(alpha=1/2) ggplot(geyser, aes(x=duration)) + stat_bkde(bandwidth=0.25) ggplot(geyser, aes(x=duration)) + geom_bkde(bandwidth=0.25)
Perform a 2D kernel density estimation using bkde2D
and display the
results with contours. This can be useful for dealing with overplotting
geom_bkde2d( mapping = NULL, data = NULL, stat = "bkde2d", position = "identity", bandwidth = NULL, range.x = NULL, lineend = "butt", contour = TRUE, linejoin = "round", linemitre = 1, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... ) stat_bkde2d( mapping = NULL, data = NULL, geom = "density2d", position = "identity", contour = TRUE, bandwidth = NULL, grid_size = c(51, 51), range.x = NULL, truncate = TRUE, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
geom_bkde2d( mapping = NULL, data = NULL, stat = "bkde2d", position = "identity", bandwidth = NULL, range.x = NULL, lineend = "butt", contour = TRUE, linejoin = "round", linemitre = 1, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... ) stat_bkde2d( mapping = NULL, data = NULL, geom = "density2d", position = "identity", contour = TRUE, bandwidth = NULL, grid_size = c(51, 51), range.x = NULL, truncate = TRUE, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
stat |
The statistical transformation to use on the data for this
layer, either as a |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
bandwidth |
the kernel bandwidth smoothing parameter. see
|
range.x |
a list containing two vectors, where each vector contains the
minimum and maximum values of x at which to compute the estimate for
each direction. see |
lineend |
Line end style (round, butt, square). |
contour |
If |
linejoin |
Line join style (round, mitre, bevel). |
linemitre |
Line mitre limit (number greater than 1). |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
Other arguments passed on to |
geom |
default geom to use with this stat |
grid_size |
vector containing the number of equally spaced points in each
direction over which the density is to be estimated. see
|
truncate |
logical flag: if TRUE, data with x values outside the range
specified by range.x are ignored. see |
A sample of the output from geom_bkde2d()
:
Same as stat_contour
geom_contour
for contour drawing geom,
stat_sum
for another way of dealing with overplotting
m <- ggplot(faithful, aes(x = eruptions, y = waiting)) + geom_point() + xlim(0.5, 6) + ylim(40, 110) m + geom_bkde2d(bandwidth=c(0.5, 4)) m + stat_bkde2d(bandwidth=c(0.5, 4), aes(fill = ..level..), geom = "polygon") # If you map an aesthetic to a categorical variable, you will get a # set of contours for each value of that variable set.seed(4393) dsmall <- diamonds[sample(nrow(diamonds), 1000), ] d <- ggplot(dsmall, aes(x, y)) + geom_bkde2d(bandwidth=c(0.5, 0.5), aes(colour = cut)) d # If we turn contouring off, we can use use geoms like tiles: d + stat_bkde2d(bandwidth=c(0.5, 0.5), geom = "raster", aes(fill = ..density..), contour = FALSE) # Or points: d + stat_bkde2d(bandwidth=c(0.5, 0.5), geom = "point", aes(size = ..density..), contour = FALSE)
m <- ggplot(faithful, aes(x = eruptions, y = waiting)) + geom_point() + xlim(0.5, 6) + ylim(40, 110) m + geom_bkde2d(bandwidth=c(0.5, 4)) m + stat_bkde2d(bandwidth=c(0.5, 4), aes(fill = ..level..), geom = "polygon") # If you map an aesthetic to a categorical variable, you will get a # set of contours for each value of that variable set.seed(4393) dsmall <- diamonds[sample(nrow(diamonds), 1000), ] d <- ggplot(dsmall, aes(x, y)) + geom_bkde2d(bandwidth=c(0.5, 0.5), aes(colour = cut)) d # If we turn contouring off, we can use use geoms like tiles: d + stat_bkde2d(bandwidth=c(0.5, 0.5), geom = "raster", aes(fill = ..density..), contour = FALSE) # Or points: d + stat_bkde2d(bandwidth=c(0.5, 0.5), geom = "point", aes(size = ..density..), contour = FALSE)
This replicates the old behaviour of geom_map()
, enabling specifying of
x
and y
aesthetics.
geom_cartogram( mapping = NULL, data = NULL, stat = "identity", ..., map, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE )
geom_cartogram( mapping = NULL, data = NULL, stat = "identity", ..., map, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
stat |
The statistical transformation to use on the data for this
layer, either as a |
... |
Other arguments passed on to |
map |
Data frame that contains the map coordinates. This will
typically be created using |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
geom_cartogram
understands the following aesthetics (required aesthetics are in bold):
map_id
alpha
colour
fill
group
linetype
size
x
y
## Not run: # When using geom_polygon, you will typically need two data frames: # one contains the coordinates of each polygon (positions), and the # other the values associated with each polygon (values). An id # variable links the two together ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3")) values <- data.frame( id = ids, value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5) ) positions <- data.frame( id = rep(ids, each = 4), x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3, 0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3), y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5, 2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2) ) ggplot() + geom_cartogram(aes(x, y, map_id = id), map = positions, data=positions) ggplot() + geom_cartogram(aes(x, y, map_id = id), map = positions, data=positions) + geom_cartogram(data=values, map=positions, aes(fill = value, map_id=id)) ggplot() + geom_cartogram(aes(x, y, map_id = id), map = positions, data=positions) + geom_cartogram(data=values, map=positions, aes(fill = value, map_id=id)) + ylim(0, 3) # Better example crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests) crimesm <- reshape2::melt(crimes, id = 1) if (require(maps)) { states_map <- map_data("state") ggplot() + geom_cartogram(aes(long, lat, map_id = region), map = states_map, data=states_map) + geom_cartogram(aes(fill = Murder, map_id = state), map=states_map, data=crimes) last_plot() + coord_map("polyconic") ggplot() + geom_cartogram(aes(long, lat, map_id=region), map = states_map, data=states_map) + geom_cartogram(aes(fill = value, map_id=state), map = states_map, data=crimesm) + coord_map("polyconic") + facet_wrap( ~ variable) } ## End(Not run)
## Not run: # When using geom_polygon, you will typically need two data frames: # one contains the coordinates of each polygon (positions), and the # other the values associated with each polygon (values). An id # variable links the two together ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3")) values <- data.frame( id = ids, value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5) ) positions <- data.frame( id = rep(ids, each = 4), x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3, 0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3), y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5, 2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2) ) ggplot() + geom_cartogram(aes(x, y, map_id = id), map = positions, data=positions) ggplot() + geom_cartogram(aes(x, y, map_id = id), map = positions, data=positions) + geom_cartogram(data=values, map=positions, aes(fill = value, map_id=id)) ggplot() + geom_cartogram(aes(x, y, map_id = id), map = positions, data=positions) + geom_cartogram(data=values, map=positions, aes(fill = value, map_id=id)) + ylim(0, 3) # Better example crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests) crimesm <- reshape2::melt(crimes, id = 1) if (require(maps)) { states_map <- map_data("state") ggplot() + geom_cartogram(aes(long, lat, map_id = region), map = states_map, data=states_map) + geom_cartogram(aes(fill = Murder, map_id = state), map=states_map, data=crimes) last_plot() + coord_map("polyconic") ggplot() + geom_cartogram(aes(long, lat, map_id=region), map = states_map, data=states_map) + geom_cartogram(aes(fill = value, map_id=state), map = states_map, data=crimesm) + coord_map("polyconic") + facet_wrap( ~ variable) } ## End(Not run)
The dumbbell geom is used to create dumbbell charts.
geom_dumbbell( mapping = NULL, data = NULL, ..., colour_x = NULL, size_x = NULL, colour_xend = NULL, size_xend = NULL, dot_guide = FALSE, dot_guide_size = NULL, dot_guide_colour = NULL, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, position = "identity" )
geom_dumbbell( mapping = NULL, data = NULL, ..., colour_x = NULL, size_x = NULL, colour_xend = NULL, size_xend = NULL, dot_guide = FALSE, dot_guide_size = NULL, dot_guide_colour = NULL, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, position = "identity" )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
... |
other arguments passed on to |
colour_x |
the colour of the start point |
size_x |
the size of the start point |
colour_xend |
the colour of the end point |
size_xend |
the size of the end point |
dot_guide |
if |
dot_guide_size , dot_guide_colour
|
singe-value aesthetics for |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
position |
Position adjustment, either as a string, or the result of a call to a position adjustment function. |
Dumbbell dot plots — dot plots with two or more series of data — are an alternative to the clustered bar chart or slope graph.
@section Aesthetics:
geom_segment()
understands the following aesthetics (required aesthetics are in bold):
Learn more about setting these aesthetics in vignette("ggplot2-specs")
.
library(ggplot2) df <- data.frame(trt=LETTERS[1:5], l=c(20, 40, 10, 30, 50), r=c(70, 50, 30, 60, 80)) ggplot(df, aes(y=trt, x=l, xend=r)) + geom_dumbbell(size=3, color="#e3e2e1", colour_x = "#5b8124", colour_xend = "#bad744", dot_guide=TRUE, dot_guide_size=0.25) + labs(x=NULL, y=NULL, title="ggplot2 geom_dumbbell with dot guide") + theme_minimal() + theme(panel.grid.major.x=element_line(size=0.05)) ## with vertical dodging df2 <- data.frame(trt = c(LETTERS[1:5], "D"), l = c(20, 40, 10, 30, 50, 40), r = c(70, 50, 30, 60, 80, 70)) ggplot(df2, aes(y=trt, x=l, xend=r)) + geom_dumbbell(size=3, color="#e3e2e1", colour_x = "#5b8124", colour_xend = "#bad744", dot_guide=TRUE, dot_guide_size=0.25, position=position_dodgev(height=0.4)) + labs(x=NULL, y=NULL, title="ggplot2 geom_dumbbell with dot guide") + theme_minimal() + theme(panel.grid.major.x=element_line(size=0.05))
library(ggplot2) df <- data.frame(trt=LETTERS[1:5], l=c(20, 40, 10, 30, 50), r=c(70, 50, 30, 60, 80)) ggplot(df, aes(y=trt, x=l, xend=r)) + geom_dumbbell(size=3, color="#e3e2e1", colour_x = "#5b8124", colour_xend = "#bad744", dot_guide=TRUE, dot_guide_size=0.25) + labs(x=NULL, y=NULL, title="ggplot2 geom_dumbbell with dot guide") + theme_minimal() + theme(panel.grid.major.x=element_line(size=0.05)) ## with vertical dodging df2 <- data.frame(trt = c(LETTERS[1:5], "D"), l = c(20, 40, 10, 30, 50, 40), r = c(70, 50, 30, 60, 80, 70)) ggplot(df2, aes(y=trt, x=l, xend=r)) + geom_dumbbell(size=3, color="#e3e2e1", colour_x = "#5b8124", colour_xend = "#bad744", dot_guide=TRUE, dot_guide_size=0.25, position=position_dodgev(height=0.4)) + labs(x=NULL, y=NULL, title="ggplot2 geom_dumbbell with dot guide") + theme_minimal() + theme(panel.grid.major.x=element_line(size=0.05))
Automatically enclose points in a polygon
geom_encircle( mapping = NULL, data = NULL, stat = "identity", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
geom_encircle( mapping = NULL, data = NULL, stat = "identity", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
mapping |
mapping |
data |
data |
stat |
stat |
position |
position |
na.rm |
na.rm |
show.legend |
show.legend |
inherit.aes |
inherit.aes |
... |
dots |
A sample of the output from geom_encircle()
:
adds a circle around the specified points
Ben Bolker
d <- data.frame(x=c(1,1,2),y=c(1,2,2)*100) gg <- ggplot(d,aes(x,y)) gg <- gg + scale_x_continuous(expand=c(0.5,1)) gg <- gg + scale_y_continuous(expand=c(0.5,1)) gg + geom_encircle(s_shape=1, expand=0) + geom_point() gg + geom_encircle(s_shape=1, expand=0.1, colour="red") + geom_point() gg + geom_encircle(s_shape=0.5, expand=0.1, colour="purple") + geom_point() gg + geom_encircle(data=subset(d, x==1), colour="blue", spread=0.02) + geom_point() gg +geom_encircle(data=subset(d, x==2), colour="cyan", spread=0.04) + geom_point() gg <- ggplot(mpg, aes(displ, hwy)) gg + geom_encircle(data=subset(mpg, hwy>40)) + geom_point() gg + geom_encircle(aes(group=manufacturer)) + geom_point() gg + geom_encircle(aes(group=manufacturer,fill=manufacturer),alpha=0.4)+ geom_point() gg + geom_encircle(aes(group=manufacturer,colour=manufacturer))+ geom_point() ss <- subset(mpg,hwy>31 & displ<2) gg + geom_encircle(data=ss, colour="blue", s_shape=0.9, expand=0.07) + geom_point() + geom_point(data=ss, colour="blue")
d <- data.frame(x=c(1,1,2),y=c(1,2,2)*100) gg <- ggplot(d,aes(x,y)) gg <- gg + scale_x_continuous(expand=c(0.5,1)) gg <- gg + scale_y_continuous(expand=c(0.5,1)) gg + geom_encircle(s_shape=1, expand=0) + geom_point() gg + geom_encircle(s_shape=1, expand=0.1, colour="red") + geom_point() gg + geom_encircle(s_shape=0.5, expand=0.1, colour="purple") + geom_point() gg + geom_encircle(data=subset(d, x==1), colour="blue", spread=0.02) + geom_point() gg +geom_encircle(data=subset(d, x==2), colour="cyan", spread=0.04) + geom_point() gg <- ggplot(mpg, aes(displ, hwy)) gg + geom_encircle(data=subset(mpg, hwy>40)) + geom_point() gg + geom_encircle(aes(group=manufacturer)) + geom_point() gg + geom_encircle(aes(group=manufacturer,fill=manufacturer),alpha=0.4)+ geom_point() gg + geom_encircle(aes(group=manufacturer,colour=manufacturer))+ geom_point() ss <- subset(mpg,hwy>31 & displ<2) gg + geom_encircle(data=ss, colour="blue", s_shape=0.9, expand=0.07) + geom_point() + geom_point(data=ss, colour="blue")
The lollipop geom is used to create lollipop charts.
geom_lollipop( mapping = NULL, data = NULL, ..., horizontal = FALSE, point.colour = NULL, point.size = NULL, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE )
geom_lollipop( mapping = NULL, data = NULL, ..., horizontal = FALSE, point.colour = NULL, point.size = NULL, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
... |
other arguments passed on to |
horizontal |
|
point.colour |
the colour of the point |
point.size |
the size of the point |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
Lollipop charts are the creation of Andy Cotgreave going back to 2011. They are a combination of a thin segment, starting at with a dot at the top and are a suitable alternative to or replacement for bar charts.
Use the horizontal
parameter to abate the need for coord_flip()
(see the Arguments
section for details).
A sample of the output from geom_lollipop()
:
@section Aesthetics:
geom_point()
understands the following aesthetics (required aesthetics are in bold):
Learn more about setting these aesthetics in vignette("ggplot2-specs")
.
df <- data.frame(trt=LETTERS[1:10], value=seq(100, 10, by=-10)) ggplot(df, aes(trt, value)) + geom_lollipop() ggplot(df, aes(value, trt)) + geom_lollipop(horizontal=TRUE)
df <- data.frame(trt=LETTERS[1:10], value=seq(100, 10, by=-10)) ggplot(df, aes(trt, value)) + geom_lollipop() ggplot(df, aes(value, trt)) + geom_lollipop(horizontal=TRUE)
Segment reference lines that originate at an point
geom_spikelines( mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., arrow = NULL, lineend = "butt", linejoin = "round", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE )
geom_spikelines( mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., arrow = NULL, lineend = "butt", linejoin = "round", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
stat |
The statistical transformation to use on the data for this
layer, either as a |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
... |
Other arguments passed on to |
arrow |
Arrow specification, as created by |
lineend |
Line end style (round, butt, square). |
linejoin |
Line join style (round, mitre, bevel). |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
Jonathan Sidi
mtcars$name <- rownames(mtcars) p <- ggplot(data = mtcars, aes(x=mpg,y=disp)) + geom_point() p + geom_spikelines(data = mtcars[mtcars$carb==4,],linetype = 2) p + geom_spikelines(data = mtcars[mtcars$carb==4,],aes(colour = factor(gear)), linetype = 2) ## Not run: require(ggrepel) p + geom_spikelines(data = mtcars[mtcars$carb==4,],aes(colour = factor(gear)), linetype = 2) + ggrepel::geom_label_repel(data = mtcars[mtcars$carb==4,],aes(label = name)) ## End(Not run)
mtcars$name <- rownames(mtcars) p <- ggplot(data = mtcars, aes(x=mpg,y=disp)) + geom_point() p + geom_spikelines(data = mtcars[mtcars$carb==4,],linetype = 2) p + geom_spikelines(data = mtcars[mtcars$carb==4,],aes(colour = factor(gear)), linetype = 2) ## Not run: require(ggrepel) p + geom_spikelines(data = mtcars[mtcars$carb==4,],aes(colour = factor(gear)), linetype = 2) + ggrepel::geom_label_repel(data = mtcars[mtcars$carb==4,],aes(label = name)) ## End(Not run)
The label
parameter can be either a 2-letter state abbreviation
or a full state name. geom_stateface()
will take care of the
translation to StateFace font glyph characters.
geom_stateface( mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., parse = FALSE, nudge_x = 0, nudge_y = 0, check_overlap = FALSE, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE )
geom_stateface( mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., parse = FALSE, nudge_x = 0, nudge_y = 0, check_overlap = FALSE, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
stat |
The statistical transformation to use on the data for this
layer, either as a |
position |
Position adjustment, either as a string, or the result of
a call to a position adjustment function. Cannot be jointy specified with
|
... |
Other arguments passed on to |
parse |
If |
nudge_x , nudge_y
|
Horizontal and vertical adjustment to nudge l abels by. Useful for offsetting text from points, particularly on discrete scales. |
check_overlap |
If |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
The package will also take care of loading the StateFace font for PDF and other devices, but to use it with the on-screen ggplot2 device, you'll need to install the font on your system.
ggalt
ships with a copy of the StateFace TTF font. You can
run show_stateface()
to get the filesystem location and then
load the font manually from there.
A sample of the output from geom_stateface()
:
Other StateFace operations:
load_stateface()
,
show_stateface()
## Not run: library(ggplot2) library(ggalt) # Run show_stateface() to see the location of the TTF StateFace font # You need to install it for it to work set.seed(1492) dat <- data.frame(state=state.abb, x=sample(100, 50), y=sample(100, 50), col=sample(c("#b2182b", "#2166ac"), 50, replace=TRUE), sz=sample(6:15, 50, replace=TRUE), stringsAsFactors=FALSE) gg <- ggplot(dat, aes(x=x, y=y)) gg <- gg + geom_stateface(aes(label=state, color=col, size=sz)) gg <- gg + scale_color_identity() gg <- gg + scale_size_identity() gg ## End(Not run)
## Not run: library(ggplot2) library(ggalt) # Run show_stateface() to see the location of the TTF StateFace font # You need to install it for it to work set.seed(1492) dat <- data.frame(state=state.abb, x=sample(100, 50), y=sample(100, 50), col=sample(c("#b2182b", "#2166ac"), 50, replace=TRUE), sz=sample(6:15, 50, replace=TRUE), stringsAsFactors=FALSE) gg <- ggplot(dat, aes(x=x, y=y)) gg <- gg + geom_stateface(aes(label=state, color=col, size=sz)) gg <- gg + scale_color_identity() gg <- gg + scale_size_identity() gg ## End(Not run)
I've been using geom_segment
more to make "bar" charts, setting
xend
to whatever x
is and yend
to 0
. The bar widths remain
constant without any tricks and you have granular control over the
segment width. I decided it was time to make a geom
.
geom_ubar( mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., na.rm = FALSE, show.legend = NA, inherit.aes = TRUE )
geom_ubar( mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., na.rm = FALSE, show.legend = NA, inherit.aes = TRUE )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
stat |
The statistical transformation to use on the data for this
layer, either as a |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
... |
other arguments passed on to |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
'geom_ubar“ understands the following aesthetics (required aesthetics are in bold):
x
y
alpha
colour
group
linetype
size
library(ggplot2) data(economics) ggplot(economics, aes(date, uempmed)) + geom_ubar()
library(ggplot2) data(economics) ggplot(economics, aes(date, uempmed)) + geom_ubar()
Draw an X-spline, a curve drawn relative to control points/observations.
Patterned after geom_line
in that it orders the points by x
first before computing the splines.
geom_xspline( mapping = NULL, data = NULL, stat = "xspline", position = "identity", na.rm = TRUE, show.legend = NA, inherit.aes = TRUE, spline_shape = -0.25, open = TRUE, rep_ends = TRUE, ... ) stat_xspline( mapping = NULL, data = NULL, geom = "line", position = "identity", na.rm = TRUE, show.legend = NA, inherit.aes = TRUE, spline_shape = -0.25, open = TRUE, rep_ends = TRUE, ... )
geom_xspline( mapping = NULL, data = NULL, stat = "xspline", position = "identity", na.rm = TRUE, show.legend = NA, inherit.aes = TRUE, spline_shape = -0.25, open = TRUE, rep_ends = TRUE, ... ) stat_xspline( mapping = NULL, data = NULL, geom = "line", position = "identity", na.rm = TRUE, show.legend = NA, inherit.aes = TRUE, spline_shape = -0.25, open = TRUE, rep_ends = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
spline_shape |
A numeric vector of values between -1 and 1, which control the shape of the spline relative to the control points. |
open |
A logical value indicating whether the spline is an open or a closed shape. |
rep_ends |
For open X-splines, a logical value indicating whether the first and last control points should be replicated for drawing the curve. Ignored for closed X-splines. |
... |
Other arguments passed on to |
geom , stat
|
Use to override the default connection between
|
A sample of the output from geom_xspline()
:
An X-spline is a line drawn relative to control points. For each control point, the line may pass through (interpolate) the control point or it may only approach (approximate) the control point; the behaviour is determined by a shape parameter for each control point.
If the shape parameter is greater than zero, the spline approximates the control points (and is very similar to a cubic B-spline when the shape is 1). If the shape parameter is less than zero, the spline interpolates the control points (and is very similar to a Catmull-Rom spline when the shape is -1). If the shape parameter is 0, the spline forms a sharp corner at that control point.
For open X-splines, the start and end control points must have a shape of 0 (and non-zero values are silently converted to zero).
For open X-splines, by default the start and end control points are replicated before the curve is drawn. A curve is drawn between (interpolating or approximating) the second and third of each set of four control points, so this default behaviour ensures that the resulting curve starts at the first control point you have specified and ends at the last control point. The default behaviour can be turned off via the repEnds argument.
geom_xspline
understands the following aesthetics (required aesthetics
are in bold):
x
y
alpha
color
linetype
size
x
y
Blanc, C. and Schlick, C. (1995), "X-splines : A Spline Model Designed for the End User", in Proceedings of SIGGRAPH 95, pp. 377-386. http://dept-info.labri.fr/~schlick/DOC/sig1.html
geom_line
: Connect observations (x order);
geom_path
: Connect observations;
geom_polygon
: Filled paths (polygons);
geom_segment
: Line segments;
xspline
;
grid.xspline
Other xspline implementations:
geom_xspline2()
set.seed(1492) dat <- data.frame(x=c(1:10, 1:10, 1:10), y=c(sample(15:30, 10), 2*sample(15:30, 10), 3*sample(15:30, 10)), group=factor(c(rep(1, 10), rep(2, 10), rep(3, 10))) ) ggplot(dat, aes(x, y, group=group, color=group)) + geom_point() + geom_line() ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point() + geom_line() + geom_smooth(se=FALSE, linetype="dashed", size=0.5) ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point(color="black") + geom_smooth(se=FALSE, linetype="dashed", size=0.5) + geom_xspline(size=0.5) ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point(color="black") + geom_smooth(se=FALSE, linetype="dashed", size=0.5) + geom_xspline(spline_shape=-0.4, size=0.5) ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point(color="black") + geom_smooth(se=FALSE, linetype="dashed", size=0.5) + geom_xspline(spline_shape=0.4, size=0.5) ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point(color="black") + geom_smooth(se=FALSE, linetype="dashed", size=0.5) + geom_xspline(spline_shape=1, size=0.5) ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point(color="black") + geom_smooth(se=FALSE, linetype="dashed", size=0.5) + geom_xspline(spline_shape=0, size=0.5) ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point(color="black") + geom_smooth(se=FALSE, linetype="dashed", size=0.5) + geom_xspline(spline_shape=-1, size=0.5)
set.seed(1492) dat <- data.frame(x=c(1:10, 1:10, 1:10), y=c(sample(15:30, 10), 2*sample(15:30, 10), 3*sample(15:30, 10)), group=factor(c(rep(1, 10), rep(2, 10), rep(3, 10))) ) ggplot(dat, aes(x, y, group=group, color=group)) + geom_point() + geom_line() ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point() + geom_line() + geom_smooth(se=FALSE, linetype="dashed", size=0.5) ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point(color="black") + geom_smooth(se=FALSE, linetype="dashed", size=0.5) + geom_xspline(size=0.5) ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point(color="black") + geom_smooth(se=FALSE, linetype="dashed", size=0.5) + geom_xspline(spline_shape=-0.4, size=0.5) ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point(color="black") + geom_smooth(se=FALSE, linetype="dashed", size=0.5) + geom_xspline(spline_shape=0.4, size=0.5) ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point(color="black") + geom_smooth(se=FALSE, linetype="dashed", size=0.5) + geom_xspline(spline_shape=1, size=0.5) ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point(color="black") + geom_smooth(se=FALSE, linetype="dashed", size=0.5) + geom_xspline(spline_shape=0, size=0.5) ggplot(dat, aes(x, y, group=group, color=factor(group))) + geom_point(color="black") + geom_smooth(se=FALSE, linetype="dashed", size=0.5) + geom_xspline(spline_shape=-1, size=0.5)
Alternative implemenation for connecting control points/observations with an X-spline
geom_xspline2( mapping = NULL, data = NULL, stat = "identity", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
geom_xspline2( mapping = NULL, data = NULL, stat = "identity", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
Other arguments passed on to |
creates a spline curve
Ben Bolker
Other xspline implementations:
geom_xspline()
If you are creating a new geom, stat, position, or scale in another package, you'll need to extend from ggplot2::Geom, ggplot2::Stat, ggplot2::Position, or ggplot2::Scale.
A package containing additional geoms, coords, stats, scales & fonts for ggplot2 2.0+
Bob Rudis (@hrbrmstr)
Makes the ProPublica StateFace font available to PDF, PostScript, et. al. devices.
load_stateface()
load_stateface()
Other StateFace operations:
geom_stateface()
,
show_stateface()
Vertically dodge position
position_dodgev(height = NULL)
position_dodgev(height = NULL)
height |
numeric, height of vertical dodge, Default: NULL |
position-dodgev(): unmodified from lionel-/ggstance/R/position-dodgev.R 73f521384ae8ea277db5f7d5a2854004aa18f947
@ggstance authors
if(interactive()){ dat <- data.frame( trt = c(LETTERS[1:5], "D"), l = c(20, 40, 10, 30, 50, 40), r = c(70, 50, 30, 60, 80, 70) ) ggplot(dat, aes(y=trt, x=l, xend=r)) + geom_dumbbell(size=3, color="#e3e2e1", colour_x = "#5b8124", colour_xend = "#bad744", dot_guide=TRUE, dot_guide_size=0.25, position=position_dodgev(height=0.8)) + labs(x=NULL, y=NULL, title="ggplot2 geom_dumbbell with dot guide") + theme_minimal() + theme(panel.grid.major.x=element_line(size=0.05)) }
if(interactive()){ dat <- data.frame( trt = c(LETTERS[1:5], "D"), l = c(20, 40, 10, 30, 50, 40), r = c(70, 50, 30, 60, 80, 70) ) ggplot(dat, aes(y=trt, x=l, xend=r)) + geom_dumbbell(size=3, color="#e3e2e1", colour_x = "#5b8124", colour_xend = "#bad744", dot_guide=TRUE, dot_guide_size=0.25, position=position_dodgev(height=0.8)) + labs(x=NULL, y=NULL, title="ggplot2 geom_dumbbell with dot guide") + theme_minimal() + theme(panel.grid.major.x=element_line(size=0.05)) }
Displays the path to the StateFace font. For the font to work in the on-screen plot device for ggplot2, you need to install the font on your system
show_stateface()
show_stateface()
Other StateFace operations:
geom_stateface()
,
load_stateface()
See bin1
& ash1
for more information.
stat_ash( mapping = NULL, data = NULL, geom = "area", position = "stack", ab = NULL, nbin = 50, m = 5, kopt = c(2, 2), na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
stat_ash( mapping = NULL, data = NULL, geom = "area", position = "stack", ab = NULL, nbin = 50, m = 5, kopt = c(2, 2), na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
geom |
Use to override the default Geom |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
ab |
half-open interval for bins [a,b). If no value is specified,
the range of x is stretched by |
nbin |
number of bins desired. Default |
m |
integer smoothing parameter; Default |
kopt |
vector of length 2 specifying the kernel, which is proportional to ( 1 - abs(i/m)^kopt(1) )i^kopt(2); (2,2)=biweight (default); (0,0)=uniform; (1,0)=triangle; (2,1)=Epanechnikov; (2,3)=triweight. |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
Other arguments passed on to |
A sample of the output from stat_ash()
:
geom_ash
understands the following aesthetics (required aesthetics
are in bold):
x
alpha
color
fill
linetype
size
density
ash density estimate
David Scott (1992), "Multivariate Density Estimation,"
John Wiley, (chapter 5 in particular).
B. W. Silverman (1986), "Density Estimation for Statistics
and Data Analysis," Chapman & Hall.
# compare library(gridExtra) set.seed(1492) dat <- data.frame(x=rnorm(100)) grid.arrange(ggplot(dat, aes(x)) + stat_ash(), ggplot(dat, aes(x)) + stat_bkde(), ggplot(dat, aes(x)) + stat_density(), nrow=3) cols <- RColorBrewer::brewer.pal(3, "Dark2") ggplot(dat, aes(x)) + stat_ash(alpha=1/2, fill=cols[3]) + stat_bkde(alpha=1/2, fill=cols[2]) + stat_density(alpha=1/2, fill=cols[1]) + geom_rug() + labs(x=NULL, y="density/estimate") + scale_x_continuous(expand=c(0,0)) + theme_bw() + theme(panel.grid=element_blank()) + theme(panel.border=element_blank())
# compare library(gridExtra) set.seed(1492) dat <- data.frame(x=rnorm(100)) grid.arrange(ggplot(dat, aes(x)) + stat_ash(), ggplot(dat, aes(x)) + stat_bkde(), ggplot(dat, aes(x)) + stat_density(), nrow=3) cols <- RColorBrewer::brewer.pal(3, "Dark2") ggplot(dat, aes(x)) + stat_ash(alpha=1/2, fill=cols[3]) + stat_bkde(alpha=1/2, fill=cols[2]) + stat_density(alpha=1/2, fill=cols[1]) + geom_rug() + labs(x=NULL, y="density/estimate") + scale_x_continuous(expand=c(0,0)) + theme_bw() + theme(panel.grid=element_blank()) + theme(panel.border=element_blank())
Provides stairstep values for ribbon plots
stat_stepribbon( mapping = NULL, data = NULL, geom = "ribbon", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, direction = "hv", ... )
stat_stepribbon( mapping = NULL, data = NULL, geom = "ribbon", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, direction = "hv", ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
geom |
which geom to use; defaults to " |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
direction |
|
... |
Other arguments passed on to |
https://groups.google.com/forum/?fromgroups=#!topic/ggplot2/9cFWHaH1CPs
x <- 1:10 df <- data.frame(x=x, y=x+10, ymin=x+7, ymax=x+12) gg <- ggplot(df, aes(x, y)) gg <- gg + geom_ribbon(aes(ymin=ymin, ymax=ymax), stat="stepribbon", fill="#b2b2b2") gg <- gg + geom_step(color="#2b2b2b") gg gg <- ggplot(df, aes(x, y)) gg <- gg + geom_ribbon(aes(ymin=ymin, ymax=ymax), stat="stepribbon", fill="#b2b2b2", direction="hv") gg <- gg + geom_step(color="#2b2b2b") gg
x <- 1:10 df <- data.frame(x=x, y=x+10, ymin=x+7, ymax=x+12) gg <- ggplot(df, aes(x, y)) gg <- gg + geom_ribbon(aes(ymin=ymin, ymax=ymax), stat="stepribbon", fill="#b2b2b2") gg <- gg + geom_step(color="#2b2b2b") gg gg <- ggplot(df, aes(x, y)) gg <- gg + geom_ribbon(aes(ymin=ymin, ymax=ymax), stat="stepribbon", fill="#b2b2b2", direction="hv") gg <- gg + geom_step(color="#2b2b2b") gg